skip to main content


Search for: All records

Creators/Authors contains: "Tong, Yuxin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The goal of this study was to perform in situ electrochemical polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) in peripheral nerves to create a soft, precisely located injectable conductive polymer electrode for bi-directional communication. Intraneural PEDOT polymerization was performed to target both outer and inner fascicles via custom fabricated 3D printed cuff electrodes and monomer injection strategies using a combination electrode-cannula system. Electrochemistry, histology, and laser light sheet microscopy revealed the presence of PEDOT at specified locations inside of peripheral nerve. This work demonstrates the potential for using in situ PEDOT electrodeposition as an injectable electrode for recording and stimulation of peripheral nerves. 
    more » « less
  2. ABSTRACT The ability to interface electronic materials with the peripheral nervous system is required for stimulation and monitoring of neural signals. Thus, the design and engineering of robust neural interfaces that maintain material-tissue contact in the presence of material or tissue micromotion offer the potential to conduct novel measurements and develop future therapies that require chronic interface with the peripheral nervous system. However, such remains an open challenge given the constraints of existing materials sets and manufacturing approaches for design and fabrication of neural interfaces. Here, we investigated the potential to leverage a rapid prototyping approach for the design and fabrication of nerve cuffs that contain supporting features to mechanically stabilize the interaction between cuff electrodes and peripheral nerve. A hybrid 3D printing and robotic-embedding (i.e., pick-and-place) system was used to design and fabricate silicone nerve cuffs (800 µm diameter) containing conforming platinum (Pt) electrodes. We demonstrate that the electrical impedance of the cuff electrodes can be reduced by deposition of the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on cuff electrodes via a post-processing electropolymerization technique. The computer-aided design and manufacturing approach was also used to design and integrate supporting features to the cuff that mechanically stabilize the interface between the cuff electrodes and the peripheral nerve. Both ‘self-locking’ and suture-assisted locking mechanisms are demonstrated based on the principle of making geometric alterations to the cuff opening via 3D printing. Ultimately, this work shows 3D printing offers considerable opportunity to integrate supporting features, and potentially even novel electronic materials, into nerve cuffs that can support the design and engineering of next generation neural interfaces. 
    more » « less
  3. The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys ( n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL −1 , respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive ‘microfluidic biopsy’ technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs. 
    more » « less
  4. Abstract

    Additive manufacturing (AM) appears poised to provide novel pharmaceutical technology and controlled release systems, yet understanding the effects of processing and post‐processing operations on pill design, quality, and performance remains a significant barrier. This paper reports a study of the relationship between programmed concentration profile and resultant temporal release profile using a 3D printed polypill system consisting of a Food and Drug Administration (FDA) approved excipient (Pluronic F‐127) and therapeutically relevant dosages of three commonly used oral agents for treatment of type 2 diabetes (300–500 mg per pill). A dual‐extrusion hydrogel microextrusion process enables the programming of three unique concentration profiles, including core–shell, multilayer, and gradient structures. Experimental and computational studies of diffusive mass transfer processes reveal that programmed concentration profiles are dynamic throughout both pill 3D printing and solidification. Spectrophotometric assays show that the temporal release profiles could be selectively programmed to exhibit delayed, pulsed, or constant profiles over a 5 h release period by utilizing the core–shell, multilayer, and gradient distributions, respectively. Ultimately, this work provides new insights into the mass transfer processes that affect design, quality, and performance of spatially graded controlled release systems, as well as demonstrating the potential to create disease‐specific polypill technology with programmable temporal release profiles.

     
    more » « less
  5. Abstract

    Highly stretchable fiber sensors have attracted significant interest recently due to their applications in wearable electronics, human–machine interfaces, and biomedical implantable devices. Here, a scalable approach for fabricating stretchable multifunctional electrical and optical fiber sensors using a thermal drawing process is reported. The fiber sensors can sustain at least 580% strain and up to 750% strain with a helix structure. The electrical fiber sensor simultaneously exhibits ultrahigh stretchability (400%), high gauge factors (≈1960), and excellent durability during 1000 stretching and bending cycles. It is also shown that the stretchable step‐index optical fibers facilitate detection of bending and stretching deformation through changes in the light transmission. By combining both electrical and optical detection schemes, multifunctional fibers can be used for quantifying and distinguishing multimodal deformations such as bending and stretching. The fibers’ utility and functionality in sensing and control applications are demonstrated in a smart glove for controlling a virtual hand model, a wrist brace for wrist motion tracking, fiber meshes for strain mapping, and real‐time monitoring of multiaxial expansion and shrinkage of porcine bladders. These results demonstrate that the fiber sensors can be promising candidates for smart textiles, robotics, prosthetics, and biomedical implantable devices.

     
    more » « less